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Imagine…

It’s 2015.

Obama is President.

You’re minding your own business in middle school… when…

SET THE STAGE

Deep-Q happens!
○ DeepMind’s Atari paper is published in Nature.

○ Played Atari games using pixel inputs and joystick actions.

○ Was awesome.
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▪ Sure, it has a huge input space, from raw pixels.

▪ Sure, it’s very capable at the task.

▪ Its actions were limited to an old-school Atari joystick:

○ 8 directions or no direction

○ with or without the button pressed

○ = 18 actions.

BUT DEEP-Q ISN’T PERFECT
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▪ Starts with Deep Q’s awesomeness

▪ Add High-Dimensional Actions

▪ Add Continuous Actions

▪ Can’t we just divide into discrete steps?

■ You could, but if the space is *also* high-dimensional, it doesn’t do 

any good.

■ Say you have 10 dimensions, and you discretize into 10 steps each. 

Now you have 10^10 = 10 billion actions = too many.

WHAT DDPG ACCOMPLISHES
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▪ Robots tend to have lots of dimensions.

○ Every joint is another dimension.

▪ Robot dimensions tend to be continuous.

○ Every joint angle or joint velocity or joint torque is a continuous variable.

▪ We want to do “Robot Learning”, so we’d like to be able to learn actions that are relevant.

WHY SHOULD WE CARE? Google: “robot with lots of joints”



BUILDING BLOCKS
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▪ 1989 (!): dissertation (!) by Watkins.

▪ Learns Q function = action-value function = value of taking an action from 

a given state and thereafter following a policy.

▪ Builds Q function through dynamic programming, recursively referring to 

itself in a different state.

▪ Mathematical proof of convergence.

▪ Discrete state; discrete actions.

○ Must visit every state and try every action an infinite number of times, if 

you want convergence.

BUILDING BLOCK: 
Q LEARNING
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▪ 2012: Degris, White, Sutton (U of Alberta!)

▪ Combined Off-Policy with Actor-Critic for the first time.

▪ Off-Policy:

○ Learning the Q function while taking actions that aren’t consistent with the policy you are learning.

○ Useful for: exploration and sample efficiency.

○ Previous works required argmax over actions; bad for continuous.

▪ Actor-Critic:

○ Actor: model for the policy that tells you what action to take.

○ Critic: model for the Q function.

○ Useful for: large/continuous action spaces, because the Actor takes care of finding the “best” action, 

instead of iterating through them all.

BUILDING BLOCK: 
OFF-POLICY ACTOR-CRITIC
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▪ 2014: Silver et al (Deepmind)

▪ Uses Off-Policy Actor Critic

▪ Stochastic policy gradients require integration over state and actions.

○ You have to account for all the actions that you might take in that state.

▪ Deterministic policy gradients only require integration over state.

○ You know exactly which action you will take, so only consider that one.

▪ Much faster learning in large action spaces.

BUILDING BLOCK: 
DETERMINISTIC POLICY GRADIENT
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▪ 2015 Atari paper: Minh et al (Deepmind again)

▪ Monochrome (preprocessed) images to joystick actions

▪ Models the Q function with a deep CNN, which was previously thought unstable

▪ Avoids instability of nonlinear functions for Q learning by:

○ Experience Replay: learning on random minibatches from a large buffer of past 

experiences, which breaks correlation between experiences.

○ Periodic target Q updates: keeps the Q target function stable as the new Q 

function is being learned, instead of fluctuating too quickly.

▪ Large (but discrete) state; discrete and small actions.

BUILDING BLOCK: 
DEEP-Q
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▪ Evaluates every possible action at each step.

○ i.e. it is not using actor-critic, just “critic” in the form of the deep CNN Q function.

▪ Do you have lots of actions?

○ You’d have to iterate through each of them, calculating your Q value, to decide.

▪ Do you have continuous actions?

○ You’d have to run a non-convex optimization at every step.

▪ Do you have high-dimensional continuous actions?

○ Your non-convex optimization keeps getting harder (→ impossible) to solve.

BUILDING BLOCK: 
DEEP-Q



DEEP DETERMINISTIC 
POLICY GRADIENT
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TAXONOMY

Modeling Model-Free
On/Off Policy Off-policy
Input Space Large; Fully Observed
Action Space Large and continuous
Environment Response Stochastic
Reward Response Deterministic or Expected
Policy Response Deterministic
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▪ Add Deep-Q’s clever ideas to DPG:

○ Deep Non-linear Critic

○ Experience Replay for stability (removing correlation)

○ Stable Target Network for stability (removing moving target)

▪ Add DPG’s clever ideas to Deep-Q:

○ Actor Network for large continuous action space

○ Deterministic Policy for efficient learning

▪ Throw in some new stuff

○ Batch Normalization to work across domains (new in 2015, but not invented here).

○ Exponentially Updating Target instead of periodic copy (seems minor, but more graceful).

○ Exploration Noise so that behavior policy will cover state/action space.

CLEVER IDEA
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▪ So how clever is this paper?

○ Meh. Seems pretty obvious next step, but someone had to publish it.

○ The novel additions don’t seem that big.

○ I speculate that this was well underway before Deep Q was published.

○ Remember that all these ideas are from Deepmind.

CLEVER IDEA?



EXPERIMENT
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▪ Ran on 26 physics simulation problems in Mujoco (plus Torcs)

○ Chose these tasks because they are inherently continuous, and Deep Q 

could not have solved them.

○ Listed on right →

▪ Actions were the torques on the joints

○ Continuous

○ Varied from 1 through 12 action dimensions

TASKS
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▪ Pretty much everything was done according to DPG or Deep-Q

○ Actor updates

○ Critic Updates

■ Deterministic Bellman (no E over actions)

■ Loss for critic:

○ Replay

■ Saved 1,000,000 steps, 16 used in minibatch (64 for low-D)

TRAINING
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▪ Had just been published by Ioffe & Szegedy (2015)

▪ For a given minibatch, whiten the activations (mean zero, variance one).

▪ Determines an average normalization, to use during testing (when there is no minibatch)

▪ Why?

○ “Minimize covariance shift”, where inputs change over time.

○ But mostly it seems to adjust the scale of inputs from different tasks, so that the same 

hyperparameters will work on them all.

BATCH NORM
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▪ Deep-Q copied the learned Q function to the target Q function every “C” steps

▪ DDPG finds it must have target networks for actor and critic to achieve same stability.

▪ Slight variation to evolve slowly

 

▪  Use τ = 0.001, which is a 680-step halflife

i.e. it takes a while for the target networks to reflect new learning

TARGET NETWORK UPDATES
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▪ Adds noise to the policy:

    (this terminology seems to overlap with the target policy network)

▪ Encourages exploration

▪ Used momentum in their noise (Ornstien-Uhlenbeck process) to make 

meaningful deviations.

EXPLORATION NOISE



EVALUATION
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▪ Random agent

○ What it sounds like.

○ Sets the “0” mark for their performance scale.

▪ iLGQ model-predictive controller

○ Simulates the future of the physics out 0.25 to 0.60 seconds, and 

optimizes the action on the simulated future.

○ Sets the “1” mark for their performance scale.

▪ Basic DPG

▪ Ablated “ours”

COMPARED TO



TEXAS ENGINEERING

AVERAGE TESTING RESULTS
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DETAILED TESTING RESULTS
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ABLATION RESULTS

▪ Green is low-d, blue is from pixels, dark grey is no batch-norm, light gray is no target network

▪ They conclude that the target network is the important part
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▪ Sample efficiency

○ The authors say this is still a problem for all model-free methods.

○ But DDPG is an improvement over on-policy methods.

▪ Deterministic policies

○ Multiplayer games often require stochastic policies to play optimally 

(poker bluffing, tennis serve placement, etc)

○ Claim that the “reparamaterization trick” can be used to apply to 

stochastic policies.

LIMITATIONS
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▪ Duan et al (2016):

○ “converge significantly faster”

○ “less stable than batch algorithms” (eg TRPO)

▪ Haarnoja et al (2017):

○ “as dynamics become more unstable (e.g. in Hopper-v1) performance gains rapidly 

diminish” due to exploration noise

○ Found more stability in other algorithms, though DDPG was fastest in many tasks

▪ Generally, stability is still cited as the real problem.

CRITIQUES
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▪ Various attempts to make it more stable

○ e.g. Haarnoja et al (2017):

■ Scaling rewards helps stability considerably

▪ TD3: Twin Delay Deep Deterministic Policy Gradient, Fujimoto et al (2018)

○ Min of two value functions to reduce overestimation (“twin”)

○ No policy updates until values are partially learned (“delay”)

▪ Soft Actor Critic

○ Adds entropy and ends up with more stability.

WHAT COMES NEXT
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VIDEO OF AGENTS: LOW-D CHEETAH

http://www.youtube.com/watch?v=pOFli1Zlk4k&t=73
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VIDEO OF AGENTS: PIXEL 7-DOF REACHING

http://www.youtube.com/watch?v=pOFli1Zlk4k&t=177
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▪ Deep-Q but with high-dimensional, continuous actions

▪ Enabled new tasks, trained fast, but lacked stability

SUMMARY OF DDPG
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VIDEO OF AGENTS (WHOLE THING)

http://www.youtube.com/watch?v=pOFli1Zlk4k

